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The Ireland ester enolate Claisen rearrangement1 and
variants thereof2 are well-established protocol for stereose-
lective carbon-carbon bond formation. A more contempo-
rary but equally powerful carbon-carbon bond-forming
process involves ring-closing metathesis of R,ω dienes3 as
catalyzed by the transition-metal carbene complexes I4 and
II.5-7 Our interest in obtaining diverse carbocyclic and
heterocyclic scaffolds for solid-phase combinatorial synthesis
prompted us to explore the possibility of utilizing these
reactions as consecutive key steps according to Scheme 1.8
For the purpose of this study, all of the starting esters

were derived from primary allylic alcohols and ω-unsatur-
ated carboxylic acids.9 Rearrangements were carried out
using one of several silyl ketene acetal-forming conditions
depending on the nature of the starting ester (Table 1). As

anticipated, with glycolate-derived substrates (entries 1-8),
chelation-assisted enolate formation provided a high degree
of stereochemical control.2a-e Thus, relative stereochemical
preferences were altered by adjusting the olefin geometry
of the starting allylic alcohols. With esters derived from
5-hexenoic acid (entries 13 and 14), stereochemical toggling
was conveniently achieved through manipulation of enolate
geometry.10,11 With the exception of entry 15, ring-closing
metathesis substrates bearing geminal olefin substitution
required the use of the more reactive molybdenum catalyst
I (entries 6-10). In fact, substrates bearing relatively large
alkene substituents (Ph or Me3Si; entries 9 and 10, respec-
tively) required more than the usual amount of catalyst to
obtain useful quantities of desired products. Catalyst I was
also required for the efficient cyclization of allytin-12 and
sulfur-containing13,14 substrates (entries 4 and 11, respec-
tively). It is notable that, in addition to fused bicyclic
systems (entry 15), spirocyclic olefins are easily prepared
via this method (entry 16).
As shown in Scheme 2, 3-substituted pipecolinic acids

were accessed using a slightly modified sequence. Thus,
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Scheme 1

Scheme 2a

a Key: (a) LDA (2 equiv), ZnCl2 (1 equiv), THF, -78 °C to rt. See
ref 2f. (b) KHMDS (2 equiv), allyl iodide, THF-DMF, -78 °C; (c)
Me3SiCHN2, MeOH, rt; (d) catalyst I (2 mol%), CH2Cl2, rt, 12 h.
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diastereoselective Kazmier-Claisen rearrangement2f,g of 4a
and 4b gave acids 5a and 5b, respectively, again as a result
of a chelation-controlled enolization process. N-Allylation15
followed by esterification and ring-closing metathesis gave
the desired pipecolinates 6a and 6b in good overall yields.
In conclusion, we have demonstrated that the ester

enolate Claisen/ring-closing metathesis manifold is a power-
ful reaction tandem for the stereoselective synthesis of
functionalized carbocycles and heterocycles. Additional

work in this area, including application to the synthesis of
natural products, will be reported in due course.
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Table 1

a (A) LiHMDS, TMSCl (in situ), THF, -95 °C to rt; (B) LDA, TMSCl, THF, -78 °C to rt; (C) LDA, TMSCl, THF-DMPU, -78 °C to rt;
(D) TBDMSCl, Et3N, CH2Cl2, 0 °C to rt. b Esterification conditions: ROH, EDCI, DMAP (cat.), CH2Cl2, rt or Me3SiCHN2, MeOH, rt.
c Ratios were determined through integration of characteristic resonances using 1H NMR at 400 MHz. d Refers to combined diastereomer
mass following esterification. e (E) 2.5 mol % II, CH2Cl2, rt, 1-16 h. (F) 2.5 mol % II, 1,2-dichloroethane, 80 °C, 16 h. (G) 5 mol % I,
benzene, rt, 1 h. (H) 50 mol % I, benzene, rt, 6 h. (I) 100 mol % I, benzene, rt, 6 h. f Major diastereomer from [3,3]. g Stereochemical
assignments were made based on diagnostic 1H NMR coupling constants and through comparison with known compounds. h Refers to
combined diastereomer mass. i Product contained small amounts of catalyst derived impurity (2,6-diisopropylaniline) following chroma-
tography. j Oxidized to the corresponding sulfone (PhSeSePh, H2O2, CH2Cl2, Et2O, rt) prior to cyclization. k The silyl ketene acetal was
heated at 65 °C for 2 h. l Isolated and characterized as a mixture of diastereomers after chromatography.
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